2011年8月10日水曜日

[電子回路] シュミットトリガ回路 : LTspiceによるシミュレーション結果

LTSpiceを用いてシミュレーションを行ったので載せておきます。
入力信号(Vc)は三角波です。

回路図




シミュレーション結果





Vc-Vout特性図


[電子回路] オペアンプを用いた無安定マルチバイブレータ - (3) シュミットトリガ回路

今回はオペアンプを用いた無安定マルチバイブレータを理解するために必要な知識として、オペアンプの正帰還を用いたシュミットトリガ回路の動作について学びます。


シュミットトリガ回路は上図のようになります。[1]
この回路は一見、ただの非反転増幅器に見えますが、負帰還ではなく正帰還になっていることからシュミットトリガ回路と判別します。[2]




(1) 出力電圧Vout
節点電圧Vaは、図より分圧を考えて次式で表されます。

またオペアンプの利得をAdとすると、

ここでとすると、 [3]
式(3.2)より ;つまり、オペアンプの入力電圧に少しでも差が存在すればVoutは∞(-∞)に増幅するように思えます。
しかしオペアンプの制限により、出力できる電圧の最大値は決まってしまいます。
よって実際には次のような出力となります。



なお、Vsはオペアンプの最大出力電圧の絶対値であり、一般にVddからオペアンプICの吸収電圧1~2Vを引いた値となっています。



(2) Vcを時間的に変化させたときのVoutとVaの変化

最初の状態としてVcがVaに対して十分に低い電圧であったとします。
このとき、式(3.3)より出力電圧Voutは+Vsとなります。
また節点電圧Vaの値は式(3.1)より、

このときのVaを+Vthとする。

ここで、Vcを少しずつ大きくしていった場合、
式(3.3)より、Vcが少しでも+Vthより大きくなるとVoutは直ちに-Vsとなります。
さらに式(3.1)よりVaも負の値(-Vth)になります。





次に最初の状態として、VcがVaに対して十分大きい電圧であったとします。
このとき、式(3.3)より出力電圧Voutは-Vsとなります。
また節点電圧Vaの値は式(3.1)より、

このときのVaを-Vthとする。

ここで、Vcを少しずつ小さくしていった場合、
式(3.3)より、Vcが少しでも-Vthより小さくなるとVoutは直ちに+Vsとなります。
さらに式(3.1)よりVaも正の値(+Vth)になります。



以上をグラフにまとめると次のようになります。
このようなグラフをヒステリシス曲線といい、
このような動作を行う回路をシュミット回路(または ヒステリシスコンパレータ)といいます。

次回は、オペアンプを用いた無安定マルチバイブレータの「動作説明」

注[1]^
なお、回路図内の+Vdd及び-Vddは、(これまでの回路では省略していたが)オペアンプを動作させるための電源電圧である。

注[2]^

非反転増幅器は上図となり、オペアンプの+-に注目するとシュミットトリガ回路と異なることがわかる。
ちなみにこの回路の利得は次式で表される。


注[3]^
わかりやすくするためAdを無限大(理想オペアンプ)として考えているが、Adが十分大きければ動作する(はず)。

[電子回路] オペアンプの等価回路

[図1] オペアンプ
オペアンプ(演算増幅器)の等価回路は図2となる。


[図2] オペアンプの等価回路

このとき理想的なオペアンプでは次が成り立つ。


なお、実際のオペアンプでは上記のようにはならず、以下のような値となる。



参考